
Flow Permissions for Android
Shashank Holavanalli, Don Manuel, Vishwas Nanjundaswamy, Brian Rosenberg, Feng Shen,

Steven Y. Ko, Lukasz Ziarek
University at Buffalo, The State University of New York, USA

{sholavan, donmanue, vishwasg, bjr24, fengshen, stevko, lziarek}@buffalo.edu

Abstract—This paper proposes Flow Permissions, an extension
to the Android permission mechanism. Unlike the existing per-
mission mechanism our permission mechanism contains semantic
information based on information flows. Flow Permissions allow
users to examine and grant explicit information flows within an
application (e.g., a permission for reading the phone number
and sending it over the network) as well as implicit information
flows across multiple applications (e.g., a permission for reading
the phone number and sending it to another application already
installed on the user’s phone). Our goal with Flow Permissions is
to provide visibility into the holistic behavior of the applications
installed on a user’s phone. Our evaluation compares our
approach to dynamic flow tracking techniques; our results with
600 popular applications and 1,200 malicious applications show
that our approach is practical and effective in deriving Flow
Permissions statically.

I. INTRODUCTION

Android is a popular platform for mobile devices. Applica-
tions for Android are written mainly in Java and referred to
as ‘apps.’ Unlike other mobile OSes, Android has a unique
permission mechanism. At development time, an app writer
needs to explicitly request permissions by including them in
an app configuration file (AndroidManifest.xml). We
refer to this configuration file simply as the ‘manifest’ in the
remainder of the paper. During installation, each user needs
to review the permissions that the app requests and explicitly
grant them for the duration the app is installed.

Currently, there are over 130 permissions which Android
apps can request in API level 17. Generally, an application can
ask for permissions to use protected APIs for phone resources
(e.g, storage, NFC, WiFi, etc.) or information available on the
phone (e.g., contacts, location, call logs, etc.). For example,
if an application wants to use APIs that control the camera,
it needs to request the android.permission.CAMERA
permission. For perspecuity we will use the shorthand
PERM when referring to a specific permission of the form
android.permission.PERM.

Although considered to be robust, the current Android
permission mechanism has a number of deficiencies. The
burden of deciding to grant permissions is placed on the
user, but the permissions themselves provide little contextual
information on how sensitive APIs are leveraged by the app.
For example, it is unclear if an app with the permission to
access the internet, as well as the phone’s SIM card, exposes
the private telephony data stored on the SIM card to the outside
world. Apps can collude with one another to effectively gain
permission they were not explicitly given (a danger that is

compounded if apps are over privileged), through the many
inter-process communication mechanisms Android provides.

To address these issues, we propose a new permission
mechanism, called Flow Permissions, that extends the ex-
isting Android permission mechanism with information on
information flows between permission domains (e.g. reading
from the SIM card and sending over the network). We also
introduce cross-app Flow Permissions that identify how apps
can interact explicitly through IPC mechanisms, and deploy-
ment permissions – implicit Flow Permissions granted when
installing an application based on indirect interactions possible
between apps installed on a phone (i.e. a deployment) and a
newly installed app. To help developers as well as users, we
provide an automated tool, called Blue Seal, for synthesizing
Flow Permissions. Blue Seal includes a lightweight cross app
analysis that can analyze multiple apps to discover cross app
flows or can be leveraged at installation time to detect implicit
deployment permissions.

In this paper, we make the following contributions:
• Flow Permissions: A new permission mechanism based

on information flows between permission domains within
an app, as well as across multiple apps. Cross app flow
detection can be leveraged at installation time to alert the
user to implicit deployment permissions.

• Blue Seal: A tool, called Blue Seal, for automatically
generating Flow Permissions, as well as a primer on how
to modify classic program analyses to analyze Android
specific constructs statically. Blue Seal generates Flow
Permissions for an app statically in order to display the
Flow Permissions before a user installs the app.

• Case studies: A large validation across 600 popular and
1,200 malicious apps.

The remainder of the paper is organized as follows: we
first present a series of motivating examples showing the
current problems with the Android permission mechanism in
Section II. Our Flow Permission extension to the Android
permission mechanism is detailed in Section III along with
additional details on the Android platform that make inferring
Flow Permissions difficult. Blue Seal is presented in Sec-
tion IV and results in Section V. Related work and conclusions
are given in Section VI and Section VII respectively.

II. MOTIVATION

To motivate the necessity of extending the current An-
droid permission mechanism, we examine four apps in detail:
MyCalendar, MySpace, Blackmoon File Browser, and Gmail.

978-1-4799-0215-6/13 c© 2013 IEEE ASE 2013, Palo Alto, USA
New Ideas Track

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

652

TABLE I
TABLE LISTING ANDROID APPS AND THEIR REQUESTED PERMISSION

EXAMPLES.

Android App Category Permissions Requested
MyCalendar Productivity STORAGE

LOCATION
NETWORK

PHONE CALLS
MySpace Social STORAGE

NETWORK
PHONE CALLS

Blackmoon File Browser Productivity STORAGE
SYSTEM TOOLS

Gmail Communication NETWORK
STORAGE

MyCalendar (com.kfactormedia.mycalendarmobile) is a third-
party calendar app, MySpace (com.myspace.android) is a
social networking app with multimedia support, Blackmoon
File Browser (com.blackmoonit.android.FileBrowser) is a pop-
ular file manager, and Gmail (com.google.android.gm) is a
well-known email app from Google. Although these apps
have widely varying functionality, MyCalendar and MySpace
request similar permissions.

A partial and stylized set of permissions each app requests
is given in Table I. Notice that MyCalendar and MySpace
both request PHONE CALLS and NETWORK. The PHONE
CALLS permission grants the app a set of more fine grained
permissions, which we omit for brevity, including permission
to read the phone number, device ID, and the phone state.
Similarly, the permission NETWORK allows the app to access
the internet, either through wifi or cellular networking.

Savvy users may notice that by granting permissions to
read from the phone’s log and phone state as well as access
to the internet, they are also implicitly granting permission
to transmit data stored within the call log and phone state
over the internet to an external source. Once the app has
permission to read from a given piece of data stored on the
phone (i.e. a data source) as well as permission to send data
outside of the app (i.e. a data sink), the app also implicitly has
permission to export the source data via the sink. Importantly,
the permissions offer no insight if the apps leverage the APIs
to ex-filtrate data.

A. Flows as Permissions

The goal of the Flow Permission mechanism is to show
whether or not an app contains a flow between a source and
a sink. The general structure of a Flow Permission is of:
source → sink. From Table II, we can see that, even though
MyCalendar and MySpace are granted the same permissions
(PHONE CALLS and NETWORK), MyCalendar is augmented
by our tool to contain the Flow Permission: PHONE NUMBER
→ NETWORK. This Flow Permission indicates that data read
from the stored phone number was subsequently exported
through the use of the network. Additionally, we can deduce
that MySpace does not contain such a flow as it does not report
such a permission. The MySpace app does, however, transmit

TABLE II
TABLE LISTING ANDROID APPS AND THEIR REQUESTED PERMISSIONS

ALONG WITH OUR PROPOSED FLOW PERMISSION EXTENSIONS.

Android App Flow Permissions
MyCalendar PHONE NUMBER → NETWORK
MySpace IMEI NUMBER → NETWORK
Blackmoon File Browser STORAGE → NETWORK

the International Mobile Equipment Identity (IMEI) number
of the device, which is indicated by the IMEI NUMBER →
NETWORK Flow Permission.

In this manner, Flow Permissions provide the user additional
context on how the standard Android permissions and the
resources/data they protect are leveraged by the apps. Nev-
ertheless, it is up to the user to decide if these behaviors
should be allowed or not. The existence of a flow does not
indicate that the app is necessarily malicious. For example,
a social networking app might be expected to contain a flow
from the IMEI number to the network as this provides the
app a mechanism to uniquely identify the device for analytics.
However, some users may not be comfortable providing such
information to the app developer, as other mechanisms (e.g.
manual login screens) can be used without exposing such data.
In contrast, a calendar app should not have such a flow. We do
note, that certain Flow Permissions should never be granted,
namely exposure of the user’s International Mobile Subscriber
Identity 1 (IMSI) number from the SIM card.

B. Interaction Between Apps

Consider a more complicated case that highlights how mul-
tiple apps can expose data sources and sinks to one another,
thereby acquiring additional implicit permissions [1]. The
Blackmoon File Browser app includes functionality to send
a file as an email attachment. However, the app cannot access
the network to send an email as it does not have the NETWORK
permission. Instead, the Blackmoon File Browser leverages
Gmail’s public interface to send files over the network. In
other words, the Blackmoon File Browser is implicitly granted
permission, if Gmail is also installed, to use the network with-
out overtly requesting such a permission. Flow Permissions,
on the other hand, highlight the flow between the Blackmoon
File Browser and the network, accomplished through the RPC
mechanism leveraged to transmit the file, as shown in Table II.

III. FLOW PERMISSIONS

Flow Permissions are an extension to the Android permis-
sion mechanism that characterizes the implicit interactions
between data and APIs protected by standard permissions. This
interaction is determined by the existence of an information
flow between the permission domains. Although there may
be multiple Android permissions dealing with a domain (i.e.
READ_SMS, WRITE_SMS, RECEIVE_SMS, and SEND_SMS,

1This number is used to uniquely identify the user, phone, and subscription
plan. Networks use this to establish roaming policies and charges associated
with non local network usage.

653

etc.), we only consider the domains themselves (e.g. SMS).
Domains are split into three categories: source domains, which
can be viewed as sources of data; sink domains, which can be
viewed as data export mechanisms; and cross-app domains,
domains which act as inputs or outputs between apps.

A. Permission Domain Types

Out of over 130 Android permissions, we have identified
thirteen canonical source domains: NETWORK, EMAIL, IME,
SMS, MIC, CALENDAR, ACCOUNTS, SDCARD, CONTACTS,
CAMERA, CALL LOG, SIMCARD 2, and LOCATION. Sim-
ilarly, we have identified five canonical sink domains:
NETWORK, EMAIL, SMS, SDCARD, and LOG. The third type
of domain (cross-app) consists of Android’s IPC mechanisms
that allow apps to share data or provide services to one another.
For example, Gmail exposes its email service to other apps via
an IPC mechanism as mentioned in Section II-B. These IPC
mechanisms can bridge a source domain in one app to a sink
domain in another app.

B. Permission Mechanism

Flow Permissions can be viewed as relations between the
three types of permission domains. There are four potential
types of Flow Permissions:

• Source → Sink: A flow from a source domain to a
sink domain.

• IPC → Sink: A flow from an IPC source domain to a
sink domain.

• Source → IPC: A flow from a source domain an IPC
sink domain.

• IPC → IPC: A flow from an IPC source domain to an
IPC sink domain.

Of the four types of Flow Permissions, those which deal
with flows to and from IPC, are not reported directly to the
user by default 3. Instead, these Flow Permissions, along with
meta-data to disambiguate the IPC, are leveraged at installation
time or during cross-app analysis to synthesize cross-app and
deployment flows. Abstractly, cross-app and deployment flows
are characterized by one app having a Flow Permission of the
form: Source→ IPC, another app having a Flow Permission
of the form: IPC → Sink, and any number of apps having
Flow Permissions of the form: IPC → IPC.

IV. SYSTEM DESIGN

Our system design is built on top of the Soot Java Optimiza-
tion Framework [2], [3]. Since Soot is originally developed for
analyzing Java bytecode, Soot integrated the Dexpler Dex to
Java bytecode translator [4] to transform Dex bytecode into
Soot’s own intermediate represetation (Jimple). In addition,
we leverage the PScout Permission Map [5]; abstractly, a
permission map is a mapping between Android API calls and
the permissions required to enact those calls. Our compiler

2We observe that the SIM Card stores two important numbers: IMSI and
ICCID and our Flow Permissions distinguish these two cases.

3Our tool can be configured to emit these as well.

Dex to Soot IR Translation

Android
APK

Dex
Bytecode

Manifest
File

Layout
File

Binder
 Resolution

Analysis

Intent
Resolution
Analysis

Content
Provider

Resolution
Analysis

Interprocedural Permission Flow Analysis

Entry Point Identification Analysis

PScout
Permission

Map

Call Graph Restructuring

Flow
Permissions

New
Manifest File

Android
API Spec

Unused Permission Analysis

New
Manifest File

Android
APK

Cross
App

AnalysisSoot Based
Analyses

Implicit Deployment
Flow Permissions

(1)

(2)

(3)

(4)(4)(4)

(5)

(6)

Fig. 1. The Blue Seal Android app analysis framework architecture. Shaded
boxes represent components already present in Soot.

leverages this precomputed mapping internally within the
analyses to associate specific permission to API calls.

At its core, our Blue Seal leverages classic forward and
backward intraprocedural dataflow analysis as well as inter-
procedural dataflow analysis based on graph reachability. As
outlined in Fig. 1, Blue Seal leverages six main analysis passes
to generate Flow Permissions: 1) entry point discovery, 2)
call graph restructuring, 3) unused permission analysis, 4)
resolution of intents, content providers, as well as uses of
the binder, 5) interprocedural permission flow analysis, and
6) cross-app permission flow analysis. Abstractly, Blue Seal
uses analyses 2, 3, and 4 to disambiguate Android specific
constructs and identify source and sink points, prior to tracking
flows between sources and sinks in analysis 5. Since Blue
Seal is built from classic analysis techniques, we tailor our
discussion on Android specific linguistic constructs, libraries,
and IPC mechanisms and how to modify standard analyses
to support them. Currently, Blue Seal is not path or context
sensitive. Here, we select several interesting parts to discuss in
detail. The complete sytem design description is availiable in
our tech report [6] at http://blueseal.cse.buffalo.edu/techreport/
techreport.pdf.

A. Entry Point Discovery

The Android platform is event driven and almost all apps
have multiple entry points. Prior to static analysis, precise en-
try point detection should be performed to improve precision.

654

public class MainActivity extends Activity {
 protected void onCreate(Bundle savedInstanceState) {
 ...
 new Task().execute("http://www...");
 ...
 }
 ...
 private class Task extends AsyncTask<String, String, Integer> {
 ...
 protected void onPreExecute() {
 ...
 }
 protected Integer doInBackground(String... strs) {
 ...
 publishProgress("intermediate result");
 ...
 return intObj;
 }
 protected void onProgressUpdate(String...strings) {
 ...
 }

 protected void onPostExecute(Integer intObj) {
 ...
 }
 }
}

Fig. 2. A code snippet illustrating the methods that comprise the control flow
of an async tasks in Android and the implicit flow of arguments provided by
the Android framework.

B. Call Graph Restructuring

The Android framework is responsible for implicitly invok-
ing methods associated with many of the constructs it provides.
To correctly analyze an app, we must infer the association of
user-called methods to their corresponding framework-invoked
methods. We discuss AsyncTask as an example below.
AsyncTask is a new threading class introduced in

Android. It provides a simple way to write a short
lived thread that communicates with the UI thread in
an asynchronous fashion. An AsyncTask can implement
five methods—onPreExecute, doInBackground,
onProgressUpdate, onPostExecute, and
onCancelled, which dictate the control flow of the
asynchronous task. As an example consider the code snippet
in Fig. 2 and the corresponding control flow given in Fig. 3.

The doInBackground method performs the
actual computation for the async task. The methods
onPreExecute and onPostExecute run before
and after doInBackground and typically include
pre- and post-processing. The onCancelled method
is called when the async task is cancelled by another
thread. Notice that onPreExecute will execute in
the implicitly created thread backing the asynchronous
task, but onPostExecute callback will be executed
by the UI thread. Similarly, onProgressUpdate gets
executed as a callback in the UI thread after there is a
call to publishProgress within doInBackground.
An app writer can call AsyncTask’s execute and
executeOnExecutor to start an AsyncTask. Obviously,
a typical call graph generation process does not understand
this execution flow; hence, we identify all AsyncTask
instances and augment the call graph to include edges
corresponding to the async task control flow. We do this
by effectively replacing the invoke of execute with
invoke calls to onPreExecute, doInBackground, and
onPostExecute. Similarly, a call to publishProgress

MainActivity.onCreate()
...
Task.execute(…);
...

Task.onPreExecute()
...

Task.doInBackground()
...
publishProgress(…);
...
return val;

Task.onProgressUpdate()
...

Task.onPostExecute()
...

UI Thread Implicit Thread

Fig. 3. The execution flow of async task methods in their respective threads
at runtime.

is replaced with a onProgressUpdate call. Notice that
doInBackground implicitly passes its return value as an
argument to onPostExecute. publishProgress also
passes its arguments as arguments to onProgressUpdate.
The call graph and method bodies are updated accordingly.

C. Interprocedural Permission Flow Analysis

To synthesize Flow Permissions we leverage an interpro-
cedural forward flow analysis to track flows between sources
and sinks. Our analysis is fixed point based, leveraging the
standard work list model and method summaries. The flow
analysis is parameterized by a listing of sources and sinks.
The goal of this analysis is to track data flows originating at
sources and terminating at sinks.

1) Computing and Applying Method Summaries: The in-
traprocedural forward flow analysis, leveraged by our interpro-
cedural analysis, builds a method summary for each reachable
method. The intraprocedural analysis is standard and builds
in-flow and out-flow sets for each statement in the method
body. The method summary constructed during this analysis
is a flow graph representing the flows between sources and
sinks within the method itself as well as arguments, returns,
and class variables the method reads or writes. We add nodes
to the graph for every argument, return statement, statement
containing a class variable read/write, and statements identified
as sources or sinks. Edges between nodes are added when a
flow is determined by the intraprocedural forward flow analy-
sis. Argument nodes and source nodes can have only outgoing
edges. Sinks and return nodes can have only incoming edges.
Nodes which represent class variable reads/writes can have
both incoming and outgoing edges. Thus, there are four types
of possible flows contained within the flow graph comprising
the method summary: 1) generative flows: flows from a source
to a return or class variable, 2) terminating flows: flows from
an argument or class variables to a sink, 3) local flows: flows
from a source to a sink, and 4) transitive flows: flows from
arguments or class variables to other class variables or returns.
Orphan nodes, nodes with no incoming or outgoing edges, are
pruned.

At a method call site the analysis applies the summary
for that method. If the method summary contains transitive
flows, we add the arguments supplied at the call site to the
out-flow set for the call. For both generative and terminating

655

flows, we add a place holder node into the method summary.
This place holder node represents potentially multiple sources
and/or sinks, one for each generative and terminating flow.
The place holder nodes will be used to synthesize a global
flow graph once all method summaries have been computed
and the interprocedural analysis reaches a fixed point. Edges
between nodes in the flow graph and the place holder node
are added as if the place holder node was a source and/or sink
node.

2) Synthesizing a Global Flow Graph: Once the interpro-
cedural analysis reaches a fix point, we synthesize a global
flow graph from the per method summaries. Place holder
nodes that were inserted when method summaries were applied
and class variable nodes serve as merge points for combining
method summaries. Once all method summaries are merged,
paths that do not originate from a source and terminate in a
sink are pruned. Flow Permissions can be generated from the
graph by enumerating all paths and removing duplicates (e.g.
an app may send contact data over the network in multiple
code blocks). Lastly, we remove any Flow Permissions that
correspond to permissions the app does not request. This
step is necessary because ad libraries [7] check to see which
permissions an app has been granted and perform computation
based on these permissions. Thus, an app may contain code
that contains flows, but will never be executed at runtime.
In general, any flow that requires a permission the app has
not been granted cannot be executed at runtime. The Flow
Permissions are then added to the manifest file for the app.

Special consideration must be given to apps that leverage
Android’s shared user ID mechanism. This mechanism allows
for multiple apps to execute as a single process. This process is
granted the union of the permissions requested by the apps. In
this case, we do not remove any Flow Permissions, regardless
if the app requests the necessary permissions or not.

D. Cross App Permission Flows Analysis

Cross-app permission flow analysis simply enumerates a
permutations of pairs of Flow Permissions between apps such
that one app has a source to IPC flow and another has a
IPC flow to a sink, and the IPC mechanism is the same.
In the case where an IPC is not disambiguated statically in
either app, our analysis is conservative and assumes any IPC
mechanism of the same type can be potentially utilized. For
file reads/writes to external storage we track the file name(s)
if they are deducible statically. Notice that when an app is
installed on a phone, its Flow Permissions and associated
meta-data (e.g. types and identifiers of IPCs) can be compared
to the Flow Permissions of installed apps to synthesize implicit
deployment Flow Permissions.

V. RESULTS AND DISCUSSION

To test the validity of our approach, we tested Blue Seal on
600 of the top rated free apps available on the Google Play
Store, as of January 2013, and on 1,200 know malicious apps
identified by the MalGenomeProject 4 [8]. We ran Blue Seal

4The full dataset is publicly available at http://www.malgenomeproject.org.

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200 1400 1600 1800

A
n

a
ly

s
is

 T
im

e
 (

S
e

c
)

App

Fig. 4. Scatter plot showing the time taken to analyze all apps in seconds.

on the Amazon EC2 [9] using their 8-core node instance with
7GB of ram.

A. Performance

Blue Seal is able to analyze and synthesize Flow Permis-
sions for all but the largest apps in under two minutes. Only
79 apps require an analysis time greater than two minutes.
Full performance results are given in Fig. 4. However, Soot’s
front-end Dex bytecode parser, Dexpler, has limitations and
generates incorrect intermediate representations for 199 of the
apps. Of these apps, 169 are form the Google Play store and 30
are from the MalGenomeProject. We used an alternative tool,
dex2jar [10], to translate these 199 apps into Java bytecode.
Of the 199 apps, we were able to analyze 127 apps using the
dex2jar translation in Blue Seal. We are currently investigating
the causes of the mis-translation of the remaining 72 apps.

Cross-app analysis is executed over the Flow Permissions
generated by Soot. Effectively, this analysis generates per-
mutations of matches between Flow Permissions that share
a common IPC. As the majority of apps have less than 10
Flow Permissions (8.34 Flow Permissions on average), we can
calculate implicitly granted deployment permission on a phone
that has 400 installed apps in less than 5 seconds. Although
these experiments were executed in EC2, these preliminary
numbers indicate that with optimizations this analysis is viable
to be performed on an actual phone.

B. Limitations

Blue Seal performs static analysis to generate Flow Per-
missions and thus suffers from the classic limitations of this
approach. Although we analyze all of the Android specific
constructs, our current implementation does not yet identify all
classic Java sources and sinks. We have focused primarily on
file, network, and output stream APIs. Wherever possible, Blue
Seal leverages the fact that most RPCs, CPs, and Intents are
known and enumerated statically by unique integers or unique
strings. In most cases Blue Seal is able to disambiguate the
components, but in cases where it cannot, Blue Seal necessar-
ily needs to be conservative, leading to potentially many false
positives. Our only comparison points were the comparison of
synthesized Flow Permissions to TaintDroid [11] and manual
introspection of the apps. In the apps we tested, our Flow
Permissions correctly identified the same flows as TaintDroid.

656

This process is unfortunately not guaranteed to generate a flow
if one exists. As such, we do not yet have a good metric to
quantify false positives.

VI. RELATED WORK

The most closely related work to ours is CHEX [12], which
provides a tool for detecting highjack enabling flows with
an app. It is the first tool to tackle analysis of Android’s
constructs such as async tasks and handlers, though it uses
a brute force permutation approach for disambiguation. Our
call graph restructuring described in Section IV-B can refine
CHEX’s approach since we identify implicit calls in Android’s
constructs whenever possible. AndroidLeaks [13] is a static
analysis tool implemented in WALA that can find leaks of
sensitive information sent over the network from Android
apps. It does not support analysis of async tasks, intents,
nor content providers and is unable to track cross-app flows.
SCanDroid [14] first proposed a methodology for analyzing
intents statically, but was never tested on real-world apps.
The approach also required the original Java source of the
programs. Mann et al. created a framework to identify privacy
leaks from the Android APIs [15], but the framework has not
been evaluated on real-world applications. DroidChecker [16]
is a static analysis tool aimed at discovering privilege es-
calation attacks and thus only analyzes exported interfaces
and APIs that are classified as dangerous. ScanDal [17] is
an abstract interpretation framework for tracking information
flows within apps. Currently, their framework is able to track
flows between location information, phone identifiers, camera,
and microphone exported to the network and SMS.

Besides static analysis tools, there is a plethora of tools that
perform dynamic analyses. TaintDroid [11] is one of the first
tools that detects flows within apps that potentially leak private
information. Alazab et al. [18] provides a dynamic analysis
technique that runs apps in a sandbox and can detect malicious
apps. MockDroid [19] is a tool that protects users’ privacy by
supplying mock data instead of sensitive data. Aurasium [20]
provides user-level sandboxing and policy enforcement to
dynamically monitor an app for security and privacy viola-
tions. Notably Aurasium does not require modifications to the
underlying OS. We believe that Aurasium is complementary to
Blue Seal, as our Flow Permissions can provide a specification
of possible malicious leaks.

VII. CONCLUSION

In this paper, we present a flow based extension to the
Android permission mechanisms, called Flow Permissions.
We detailed a comprehensive primer on Android specific
mechanisms and libraries in our description of Blue Seal, an
automated infrastructure for synthesizing Flow Permissions.
We provided a comprehensive evaluation of Flow Permissions
in a wide variety of Android apps.

REFERENCES

[1] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: attacks and defenses,” in Proceedings of the 20th USENIX
conference on Security, SEC’11, 2011.

[2] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative
research, CASCON ’99, pp. 13–, IBM Press, 1999.

[3] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and
V. Sundaresan, “Optimizing java bytecode using the soot framework:
Is it feasible?,” in Proceedings of the 9th International Conference
on Compiler Construction, CC ’00, (London, UK, UK), pp. 18–34,
Springer-Verlag, 2000.

[4] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler: converting
android dalvik bytecode to jimple for static analysis with soot,” in
Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program analysis, SOAP ’12, (New York, NY, USA),
pp. 27–38, ACM, 2012.

[5] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security, CCS ’12, 2012.

[6] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosenberg, F. Shen,
S. Y. Ko, and L. Ziarek, “Flow permissions for android,” Tech. Rep.
2013-04, Department of Computer Science and Engineering, University
at Buffalo, The State University of New York, 2013.

[7] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile
Networks, WISEC ’12, (New York, NY, USA), pp. 101–112, ACM,
2012.

[8] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Security and Privacy (Oakland), 2012 IEEE Sympo-
sium on, 2012.

[9] “Amazon ec2.” http://aws.amazon.com/ec2/.
[10] “dex2jar.” http://code.google.com/p/dex2jar/.
[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
OSDI’10, (Berkeley, CA, USA), pp. 1–6, USENIX Association, 2010.

[12] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of the 2012 ACM conference on Computer and communications security,
CCS ’12, 2012.

[13] M. S. Ware and C. J. Fox, “Securing java code: heuristics and an
evaluation of static analysis tools,” in Proceedings of the 2008 workshop
on Static analysis, SAW ’08, (New York, NY, USA), pp. 12–21, ACM,
2008.

[14] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated
security certification of android applications.”

[15] C. Mann and A. Starostin, “A framework for static detection of privacy
leaks in android applications,” in Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC ’12, (New York, NY, USA),
pp. 1457–1462, ACM, 2012.

[16] P. P. Chan, L. C. Hui, and S. M. Yiu, “Droidchecker: analyzing
android applications for capability leak,” in Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and Mobile Networks,
WISEC ’12, (New York, NY, USA), pp. 125–136, ACM, 2012.

[17] J. Kim, Y. Yoon, K. Yi, and J. Shin, “ScanDal: Static analyzer for
detecting privacy leaks in android applications,” in MoST 2012: Mobile
Security Technologies 2012 (H. Chen, L. Koved, and D. S. Wallach,
eds.), (Los Alamitos, CA, USA), IEEE, May 2012.

[18] M. Alazab, V. Monsamy, L. Batten, P. Lantz, and R. Tian, “Analysis
of malicious and benign android applications,” in Proceedings of the
2012 32nd International Conference on Distributed Computing Systems
Workshops, ICDCSW ’12, (Washington, DC, USA), pp. 608–616, IEEE
Computer Society, 2012.

[19] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading
privacy for application functionality on smartphones,” in Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications,
HotMobile ’11, (New York, NY, USA), pp. 49–54, ACM, 2011.

[20] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: practical policy enforce-
ment for android applications,” in Proceedings of the 21st USENIX
conference on Security symposium, Security’12, 2012.

657

